1
2
3
4
5
#

Less effort, better results

The all-in-one learning platform built for physics educators and their students.

Lesson Name: Coulomb’s Law

Instructional Block

Coulomb’s Law


LEARNING OBJECTIVES 

 

By the end of this section, you will be able to:

  • State Coulomb's law in terms of how the electrostatic force changes with the distance between two objects.
  • Calculate the electrostatic force between two point charges, such as electrons or protons.
  • Compare the electrostatic force to the gravitational attraction for a proton and an electron; for a human and the Earth.

 

 

 

Figure 1 This NASA image of Arp 87 shows the result of a strong gravitational attraction between two galaxies. In contrast, at the subatomic level, the electrostatic attraction between two objects, such as an electron and a proton, is far greater than their mutual attraction due to gravity. (credit: NASA/HST)

 

Through the work of scientists in the late 18th century, the main features of the electrostatic force—the existence of two types of charge, the observation that like charges repel, unlike charges attract, and the decrease of force with distance—were eventually refined, and expressed as a mathematical formula. The mathematical formula for the electrostatic force is called Coulomb's law after the French physicist Charles Coulomb (1736–1806), who performed experiments and first proposed a formula to calculate it.

 

COULOMB'S LAW 

 

Coulomb's law calculates the magnitude of the force \(F\) between two point charges, \(q_{1}\) and \(q_{2}\), separated by a distance \(r\). In SI units, the constant is equal to

 

\(k = 8.988 \times 10^9 \frac{\mathrm{N \cdot m^2}}{ \mathrm{C^2}} \approx 8.99 \times 10^9 \frac{\mathrm{N \cdot m^2}}{ \mathrm{C^2}}.\)

 

The electrostatic force is a vector quantity and is expressed in units of newtons. The force is understood to be along the line joining the two charges. (See Figure 2.)

 

Although the formula for Coulomb's law is simple, it was no mean task to prove it. The experiments Coulomb did, with the primitive equipment then available, were difficult. Modern experiments have verified Coulomb's law to great precision. For example, it has been shown that the force is inversely proportional to distance between two objects squared \((F \propto 1/r^2)\) to an accuracy of 1 part in \(10^{16}\). No exceptions have ever been found, even at the small distances within the atom.

 

 

Figure 2 The magnitude of the electrostatic force \(F\)  between point charges \(q_{1}\)  and \(q_{2}\)  separated by a distance  r  is given by Coulomb's law. Note that Newton's third law (every force exerted creates an equal and opposite force) applies as usual—the force on \(q_{1}\)  is equal in magnitude and opposite in direction to the force it exerts on \(q_{2}\) . (a) Like charges. (b) Unlike charges.

 

MAKING CONNECTIONS: COMPARING GRAVITATIONAL AND ELECTROSTATIC FORCES 

 

Recall that the gravitational force (Newton's law of gravitation) quantifies force as \(F_{s} = G \frac{mM}{r^2}.\).

The comparison between the two forces—gravitational and electrostatic—shows some similarities and differences. Gravitational force is proportional to the masses of interacting objects, and the electrostatic force is proportional to the magnitudes of the charges of interacting objects. Hence both forces are proportional to a property that represents the strength of interaction for a given field. In addition, both forces are inversely proportional to the square of the distances between them. It may seem that the two forces are related but that is not the case. In fact, there are huge variations in the magnitudes of the two forces as they depend on different parameters and different mechanisms. For electrons (or protons), electrostatic force is dominant and is much greater than the gravitational force. On the other hand, gravitational force is generally dominant for objects with large masses. Another major difference between the two forces is that gravitational force can only be attractive, whereas electrostatic could be attractive or repulsive (depending on the sign of charges; unlike charges attract and like charges repel).

 

EXAMPLE 1 HOW STRONG IS THE COULOMB FORCE RELATIVE TO THE GRAVITATIONAL FORCE?

 

Compare the electrostatic force between an electron and proton separated by 
\(0.530 \times 10^{-10}\) with the gravitational force between them. This distance is their average separation in a hydrogen atom.

 

Strategy

To compare the two forces, we first compute the electrostatic force using Coulomb's law, \(F = k \frac{| q_{1} q_{2}|}{r^2}\). We then calculate the gravitational force using Newton's universal law of gravitation. Finally, we take a ratio to see how the forces compare in magnitude.

 

Solution

Entering the given and known information about the charges and separation of the electron and proton into the expression of Coulomb's law yields

 

\(=(8.99 \times 10^9 \thinspace \mathrm{N \cdot m^2/C^2}) \times \frac{(1.60 \times 10^{-19} \thinspace \mathrm{C})}{ (0.530 \times 10^{-10} \thinspace \mathrm{m})^2 }\)

 

 
Thus the Coulomb force is

The charges are opposite in sign, so this is an attractive force. This is a very large force for an electron—it would cause an acceleration of \(8.99 \times 10^{22} \thinspace \mathrm{m/s^2}\)(verification is left as an end-of-section problem).The gravitational force is given by Newton's law of gravitation as:

where \(G = 6.67 \times 10^{-11} \thinspace \mathrm{N \cdot m^2/kg^2}\). Here \(m\) and \(M\) represent the electron and proton masses, which can be found in the appendices. Entering values for the knowns yields

 

 

This is also an attractive force, although it is traditionally shown as positive since gravitational force is always attractive. The ratio of the magnitude of the electrostatic force to gravitational force in this case is, thus,

 

 

Discussion

This is a remarkably large ratio! Note that this will be the ratio of electrostatic force to gravitational force for an electron and a proton at any distance (taking the ratio before entering numerical values shows that the distance cancels). This ratio gives some indication of just how much larger the Coulomb force is than the gravitational force between two of the most common particles in nature.

 

As the example implies, gravitational force is completely negligible on a small scale, where the interactions of individual charged particles are important. On a large scale, such as between the Earth and a person, the reverse is true. Most objects are nearly electrically neutral, and so attractive and repulsive Coulomb forces nearly cancel. Gravitational force on a large scale dominates interactions between large objects because it is always attractive, while Coulomb forces tend to cancel.

No hints found for this question

Multiple Choice

What will happen to the electrostatic force when the distance between the charges is increased?

Answer Rubric % Of Choosen
cannot tell In-Correct 0 %
remains the same In-Correct 5 %
increases In-Correct 8 %
decreases Correct 86 %
No hints found for this question

Multiple Choice

What type of force does the charges \(q_1\) and \(q_2\) exert when both have the same sign -either both positive or negative-?

Answer Rubric % Of Choosen
Repulsive forces. Correct 92 %
Positive forces if both are positively-charged. In-Correct 0 %
Attractive forces. In-Correct 5 %
Negative forces if both are negatively-charged. In-Correct 3 %
No hints found for this question

Multiple Choice

Who formulated the law which states that the force between two charges Q1 and Q2 is proportional to their product divided by the separation distance r squared?

Answer Rubric % Of Choosen
Charles Augustin de Coulomb Correct 97 %
Michael Faraday In-Correct 0 %
Hans Christian Oersted In-Correct 0 %
Andre Marie Ampere In-Correct 3 %
No hints found for this question

Multiple Choice

An electron at a certain distance from a charged particle is attracted with a certain force. If the distance is twice as the certain distance, how will you compare the forces?

Answer Rubric % Of Choosen
The force will be one-fourth as much. Correct 78 %
The force will be square of the certain force. In-Correct 8 %
The force will be half as much. In-Correct 8 %
The force will be twice as much. In-Correct 5 %
No hints found for this question

Multiple Choice

An electron is placed in an electric field of 12.0 N/C to the right. What is the resulting force on the electron?

Answer Rubric % Of Choosen
1.92×10-18 N right In-Correct 11 %
1.33×10-20 N left In-Correct 3 %
1.92×10-18 N left In-Correct 73 %
1.33×10-20 N right Correct 14 %
No hints found for this question

Numeric + Units

A proton and an electron are placed \(1.3\times 10^{-6} \; m \) apart. What is the force between them?

You can use scientific notation to express the answer.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct -1.3633e-16 0 [-1.3633E-16,-1.3633E-16]

\(N\)

Incorrect 1.3633e-16 5.0E-17 [8.633E-17,1.8633E-16]

\(N\)

The charge of the electron is negative

\(F={kq_1q_2 \over r^2}\)

\(F={(9.0\times 10^9 \; {Nm^2 \over C^2})(1.6\times10^{-19} \; C)(-1.6\times10^{-19} \; C) \over (1.3\times10^{-6} \; m)^2}\)

-1.36e-16 N


Multiple Choice

A typical AAA battery can move 2000 C of charge at 1.5 V. How long will this run a 50 mW LED?

Answer Rubric % Of Choosen
1000 minutes Correct 86 %
120,000 seconds In-Correct 8 %
250 minutes In-Correct 3 %
15 hours In-Correct 3 %
No hints found for this question

Multiple Choice

What is the internal energy of a system consisting of two point charges, one 2.0 µC, and the other −3.0 µC, placed 1.2 m away from each other?

Answer Rubric % Of Choosen
4.5×10-2 J In-Correct 3 %
−4.5×10-2 J Correct 81 %
3.8×10-2 J In-Correct 5 %
−3.8×10-2 J In-Correct 11 %
No hints found for this question

Multiple Choice

Which graph illustrates the relationship between electrostatic force and the distance between the charges. 

Answer Rubric % Of Choosen
In-Correct 5 %
In-Correct 14 %
Correct 68 %
In-Correct 14 %
No hints found for this question

Multiple Choice

Formulate a formula that states "the law of force between charges Q1 and Q2 are proportional to their product divided by the separation distance r squared."

Answer Rubric % Of Choosen
\(F=\frac{Q_1+Q_2}{r^2}\) In-Correct 8 %
\(F=\frac{Q_1Q_2}{r^2}\) Correct 86 %
\(F=\frac{r^2Q_2}{Q_1}\) In-Correct 3 %
\(Q_1=\frac{FQ_2}{r^2}\) In-Correct 3 %
No hints found for this question

Numeric + Units

A helium nucleus has a \(2e\) charge and a neon nucleus has a charge of \(10e\), where \(e\) is the fundamental charge, \(1.6\times10^{-19} \;C\). Find the repulsive force exerted on each of them due to the other when they are separated by 3 nm.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 5.1e-10 0 [5.1E-10,5.1E-10]

\(N\)

Incorrect 2e28 1.0E+28 [1.0E+28,3.0E+28]

\(N\)

Convert the units of r

\(F=k {q1q2\over r^2}\)

Convert the units of r:

 

\(3\; nm \left( 10^{-9} \; m \over 1\;nm\right)=3\times10^{-9}\;m\)

\(F=9\times 10^9 \; {Nm^2 \over C^2} {20(1.6\times10^{-19}\;C)^2 \over (3\times10^{-9})^2}\)

Answer: 5.1e-10 N


Multiple Choice

A proton and an electron are m meters apart. What will happen to the force between them if they are more than m meters apart?

Answer Rubric % Of Choosen
Cannot tell. In-Correct 0 %
The force between them decreases remain the same. In-Correct 3 %
The force between them increases. In-Correct 11 %
The force between them decreases. Correct 86 %
No hints found for this question

Numeric + Units

Calculate the electric force between two charges, one of \(6 \space \mu C\) and one of \(-8 \space \mu C\) separated \(1.5 \space m\).

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct -0.195 0.005 [-0.2,-0.19]

\(N\)

NULL
\(F_e={kq_1q_2 \over r^2}\)

 \(F_e={(9\times10^9 \space {Nm^2 \over r^2})(6\times10^{-6} \space C)(-8\times10^{-6} \space C) \over (1.5 \space m)^2}\)

Answer: \(F_e=-0.192 \space N\)


Multiple Choice

A proton and an electron are m meters apart. What will happen to the force between them if they are less than m meters apart?

Answer Rubric % Of Choosen
The force between them increases. Correct 92 %
The force between them decreases remain the same. In-Correct 0 %
Cannot tell. In-Correct 0 %
The force between them decreases. In-Correct 8 %
No hints found for this question

Numeric + Units

Two small spheres with the same charge, \(q=6 \; C\), experience a force of 29 N. Determine the distance between them.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 105000 5000 [100000,110000]

\(m\)

NULL
\(F=k{q_1q_2\over r^2}\)

Since the charges are the same:  \(F=k{q^2\over r^2}\)

 \(r=\sqrt{kq^2\over F}\)

 \(r=\sqrt{(9\times 10^9 \; {Nm^2 \over C^2})(6 \; C)^2\over 29 \; N}\)

Answer: \(r=105699.6395 \; m\)


Numeric + Units

Two small spheres with the same charge, \(q=8 \times 10^{-5} \; C\), are separated by 1.9 m. Determine the force between them.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 15.5 0.5 [15,16]

\(N\)

NULL
\(F=k{q_1q_2 \over r^2}\)

Since the charges are the same:  \(F=k{q^2 \over r^2}\)

 \(F={(9\times 10^9 \; {Nm^2 \over C^2})(8 \times 10^{-5} \; C)^2 \over 1.9^2}\)

Answer: \(F=15.9557 \; N\)


Multiple Choice

A proton and an electron are m meters apart. What do you think will happen to the distance between them if the force between them increases?

Answer Rubric % Of Choosen
The particles become nearer to each other. Correct 89 %
The distance between the particles is the same. In-Correct 0 %
The particles become farther from each other. In-Correct 11 %
Cannot tell. In-Correct 0 %
No hints found for this question

Numeric + Units

How much force is between the spheres based on the illustration?

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct -15500 500 [-16000,-15000]

\(N\)

\(F={kq_1q_2\over r^2}\)

 

 \(F={(9\times 10^9 \; {Nm^2 \over C^2})(2.8\times 10^{-5} \; C)(-2.5\times 10^{-5} \; C)\over (2\times 10^{-2} \; m)^2}\)

 

Answer: \(F=-15750 \; N\)


Multiple Choice

A proton and an electron are m meters apart. What do you think will happen to the distance between them if the force between them decreases?

Answer Rubric % Of Choosen
Cannot tell. In-Correct 0 %
The distance between the particles is the same. In-Correct 3 %
The particles become nearer to each other. In-Correct 3 %
The particles become farther from each other. Correct 95 %
No hints found for this question

Numeric + Units

The force between a proton and an electron is \(-6 \times 10^{-21} \; N\). How far apart are the charges?

You can express the answer in scientific notation.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 0.000195 5.0E-6 [0.00019,0.0002]

\(m\)

NULL
\(F={kq_1q_2 \over r^2}\)

 \(r= \sqrt{ kq_1q_2 \over F}\)

 \(r= \sqrt{ (9.0\times 10^9 {Nm^2 \over C^2})(1.6\times10^{-19} \; C)(-1.6\times10^{-19} \; C) \over -6 \times 10^{-21} \; N}\)

Answer: 1.96E-4 m


Numeric + Units

Two charged objects are placed 5 m apart. Object A has a charge of \(5\times10^{-19} \; C\). How much charge does object B posses if the force between them is \(6 \times10^{-28} \; N\)?

You can use scientific notation to express the answer.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 3.35e-18 5.0E-20 [3.3E-18,3.4E-18]

\(C\)

NULL
\(F={kq_Aq_B \over r}\)

 \(q_B={Fr^2 \over kq_A }\)

 \(q_B={(6\times 10^{-28} \; N)(5 \; m)^2 \over (9.0\times 10^9 \; {Nm^2 \over C^2})(5\times10^{-19} \; C) }\)

Answer: 3.33E-18 C


Numeric + Units

Two small spheres with the same charge are separated by 1.5 m. Determine the charge of the spheres if each experiences a 4-N force.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 3.15e-05 5.0E-7 [3.1E-5,3.2E-5]

\(C\)

NULL
\(F=k{q_1q_2 \over r^2}\)

Since the charges are the same: \(F=k{q^2 \over r^2}\)

 \(q=\sqrt{Fr^2 \over k}\)

 \(q=\sqrt{(4 \; N)(1.5 \; m)^2 \over 9\times 10^9 \; {Nm^2 \over C^2}}\)

Answer: 3.16E-5 C


Numeric + Units

A helium nucleus has a charge \(q_1=+4e\) and a neon nucleus has a charge \(q_2=+5e\), where \(e=1.6 \times 10^{-19 } \; C\). Find the repulsive force experienced by the particles, considering that they are separated by \(1.9 \times10^{-9} \; m\).

You can express your answer in scientific notation.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 7.9e+09 100000000 [7800000000,8000000000]

\(N\)

NULL
\(F=k{q_1q_2 \over r^2}\)

 \(F={(9\times 10^9 \; {Nm^2 \over C^2})(4e)(5e) \over (1.9\times 10^{-9} \; m)^2}\)

 \(F={(9\times 10^9 \; {Nm^2 \over C^2})(20e) \over (1.9\times 10^{-9} \; m)^2}\)

 \(F={20(9\times 10^9 \; {Nm^2 \over C^2})(1.6 \times 10^{-19 } \; C) \over (1.9\times 10^{-9} \; m)^2}\)

Answer: 7.98E9 N


Numeric + Units

Calculate the repulsive force between two charges, \(q_1=0.9 \; C\)  and  \(q_2=0.8 \; C\) ,  if they are separated by a distance of 1 m.

You can express your answer in scientific notation.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 6.45e+09 50000000 [6400000000,6500000000]

\(N\)

NULL
\(F=k{q_1q_2\over r^2}\)

 \(F={(9\times 10^9 \; {Nm^2 \over C^2})(0.9 \; C)(0.8 \; C)\over(1 \; m)^2}\)

Answer: 6.48E9 N


Numeric + Units

Two identical coins rest on a table with a separation of 2.2 m and contain identical charges. How large is the charge in each coin if one experiences a force of 1 N?

The diameter of the coins is small compared to the separation between them, therefore we can assume that the charges are punctual.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 2.35e-05 5.0E-7 [2.3E-5,2.4E-5]

\(C\)

NULL

\(F=k{q_1q_2\over r^2}\)

Since the coins are identical, \(q_1=q_2=q \; \Rightarrow \; F=k{q^2\over r^2}\)

 \(q=\sqrt{Fr^2\over k}\)

 \(q=\sqrt{(1 \;N)(2.2 \; m)^2\over 9\times 10^9 \; {Nm^2 \over C^2}}\)

Answer: 2.32E-5 C


Numeric + Units

Two identical coins rest submerged in a tub with water with a separation of 2.3 m and contain identical charges. How large is the charge in each coin if one experiences a force of 8 N?

The diameter of the coins is small compared to the separation between them, therefore we can assume that the charges are punctual. Consider the dielectric constant of water \(K=80\).

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 0.000615 5.0E-6 [0.00061,0.00062]

\(C\)

NULL

\(F={k\over K}{q_1q_2\over r^2}\)

Since the coins are identical, \(q_1=q_2=q \; \Rightarrow \; F=k{q^2\over r^2}\)

 \(q=\sqrt{KFr^2\over k}\)

 \(q=\sqrt{80(8 \;N)(2.3 \; m)^2)\over 9\times 10^9 \; {Nm^2 \over C^2}}\)

Answer: 6.13E-4 C


Numeric + Units

A glass bar charged with \(Q=\)C is brought close to a piece of paper at a distance of 7 mm exerting an electrical force \(F=-4.27 \times 10^{16}\;N\). Compute for the charge q induced in the piece of paper.   

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 115 5 [110,120]

\(C\)

NULL

\(F=K{Q \cdot q \over d^2} \rightarrow q={F \cdot d^2 \over k \cdot Q}\)

Convert the units of \(d\)\(d=7\;mm({1\;m \over 1000\;mm})=0.007\;m\)

\(q={(-4.27\times 10^{16}\;N) (0.007\;m)^2 \over (9 \times 10^9{N \cdot m^2 \over C^2})(2\;C)}\)

Answer: \(q=116.2079\;C\)


Numeric + Units

A charged particle \(P_1\) has moved 39 cm away from another charged particle \(P_2\), both have the same sign. If a work W=34 J has been done to move \(P_1\), what is the amount of the repulsion force between the particles?

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 87.5 0.5 [87,88]

\(N\)

NULL

\(F={W \over r}\)

Convert the units of \(r\)\(r=39\;cm({1\;m \over 100\;cm})=0.39\;m\)

\(F={34\;J \over 0.39\;m}\)

Answer: \(F=87.1795\;N\)


Numeric + Units

Calculate the work required to separate two charged particles by a distance of r=5 cm, if the electric force between them is F=31 N.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 1.55 0.05 [1.5,1.6]

\(J\)

NULL

\(F={W \over r} \rightarrow W=F \cdot r\)

Convert the units of \(r\)\(r=5\;cm({1\;m \over 100\;cm})=0.05\;m\)

\(W=(31\;N)(0.05\;m)\)

Answer: \(W=1.55\;J\)


Numeric + Units

Calculate the work needed to bring together two charges \(q_1 = 6\;C\) and \(q_2 = 6\;C\) at distance \(r = 1.77\;m\).

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 20.5 0.5 [20,21]

\(J\)

NULL

\(W={q_1 \cdot q_2 \over r}\)

\(W={(6\;C)(6\;C) \over 1.77\;m}\)

Answer: \(W=20.339\;J\)

Numeric + Units

Solve for the electric force.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 11.5 0.5 [11,12]

\(N\)

NULL

\(F={W \over r}\)

\(F={20.339\;J \over 1.77\;m}\)

Answer: \(F=11.491\;N\)



Numeric + Units

Two charged particles \(q_1 = 2.5 \;\mu C\) and \(q_2 = -8.6 \;\mu C\) are \(r = 13.46\;cm\) apart.

a. Calculate the force between the particles in SI units.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct -10.5 0.5 [-11,-10]

\(N\)

NULL

\(F = K {q_1 \cdot q_2 \over r^2}\)

Convert the units of r\(r = 13.46\;\not cm \bigg( {1\;m \over 100\;\not cm} \bigg) = 1.35 \times 10^{-1}\;m\)  

Convert the units of q

\(\;\;\;\;\;\;\;\;\;\;q_1 = 2.5\;\not \mu C \bigg( {1\;C \over 1 \times 10^6\;\not \mu C} \bigg) = 2.5 \times 10^{-6}\;C \)

\(\;\;\;\;\;\;\;\;\;\;q_2 = -8.6\;\not \mu C \bigg( {1\;C \over 1 \times 10^6\;\not \mu C} \bigg) = -8.6 \times 10^{-6}\;C \)

In SI units, \(K = 9.0 \times 10^9 {N \cdot m^2 \over C^2}\);

 \(F = 9.0 \times 10^9 {N \cdot m^2 \over C^2} {(2.5 \times 10^{-6}\;C)(-8.6 \times 10^{-6}\;C) \over (1.35 \times 10^{-1}\;m)^2}\)

Answer: \(F = -10.6805\;N\)

Numeric + Units

b. Calculate the force between the particles in cgs units. 

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct -1050000 50000 [-1100000,-1000000]

\(dyn\)

NULL

\(F = {q_1 \cdot q_2 \over r^2}\)

Convert the units of q

\(\;\;\;\;\;\;\;\;\;\;q_1 = 2.5\;\not \mu C \bigg( {1\;C \over 1 \times 10^6\;\not \mu C} \bigg) \bigg( {3.0 \times 10^9\;esu \over 1\;\not C} \bigg)= 7.5 \times 10^{3}\;esu\)

\(\;\;\;\;\;\;\;\;\;\;q_2 = -8.6\;\not \mu C \bigg( {1\;C \over 1 \times 10^6\;\not \mu C} \bigg) \bigg( {3.0 \times 10^9\;esu \over 1\;\not C} \bigg)= -2.58 \times 10^{4}\;esu\)

\(F ={(7.5 \times 10^{3}\;esu)(-2.58 \times 10^{4}\;esu) \over (1.35 \times 10^{-1}\;m)^2}\)

Answer: \(F=\)-1.07E6 dyn



Numeric + Units

What is the electrical force between an \(\alpha - particle\) and a proton if they are 3 Å away?

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 5.65e-19 5.0E-21 [5.6E-19,5.7E-19]

\(N\)

NULL

\(F = {q_{\alpha} \cdot q_p \over r^2}\)

Convert the units of r\(r = 3\;\not {A^\circ} \bigg( {1\;m \over 10^{10}\;\not {A^\circ}} \bigg) = 3 \times 10^{-10}\;m\) 

\(q_{alpha} = 2(1.6 \times 10^{-19}\;C) = 3.2 \times 10^{-19}\;C\\ q_{p} = 1.6 \times 10^{-19}\;C\)

\(F = {(3.2 \times 10^{-19}\;C)(1.6 \times 10^{-19}\;C) \over (3 \times 10^{-10}\;m)^2} \)

Answer: \(F =\) 5.69E-19 N


Simplify how you teach physics.

Start with Key2PHYSICS, our all-in-one Learning Platform for Physics Educators. It has the tools you need to teach physics—lessons, assessments, and learning reports—all in one place.