1
2
3
4
5
#

Less effort, better results

The all-in-one learning platform built for physics educators and their students.

Lesson Name: Time, Velocity, and Speed

Instructional Block

Time, Velocity, and Speed

 

Figure 1 The motion of these racing snails can be described by their speeds and their velocities. (credit: tobitasflickr, Flickr)

 

LEARNING OBJECTIVES 

 

By the end of this section, you will be able to:

  • Explain the relationships between instantaneous velocity, average velocity, instantaneous speed, average speed, displacement, and time.
  • Calculate velocity and speed given initial position, initial time, final position, and final time.
  • Derive a graph of velocity vs. time given a graph of position vs. time.
  • Interpret a graph of velocity vs. time.

There is more to motion than distance and displacement. Questions such as, “How long does a foot race take?” and “What was the runner's speed?” cannot be answered without an understanding of other concepts. In this section, we add definitions of time, velocity, and speed to expand our description of motion.

 

Time

As discussed in Physical Quantities and Units, the most fundamental physical quantities are defined by how they are measured. This is the case with time. Every measurement of time involves measuring a change in some physical quantity. It may be a number on a digital clock, a heartbeat, or the position of the Sun in the sky. In physics, the definition of time is simple—time is change, or the interval over which change occurs. It is impossible to know that time has passed unless something changes.

The amount of time or change is calibrated by comparison with a standard. The SI unit for time is the second, abbreviated s. We might, for example, observe that a certain pendulum makes one full swing every 0.75 s. We could then use the pendulum to measure time by counting its swings or, of course, by connecting the pendulum to a clock mechanism that registers time on a dial. This allows us to not only measure the amount of time, but also to determine a sequence of events.

How does time relate to motion? We are usually interested in elapsed time for a particular motion, such as how long it takes an airplane passenger to get from his seat to the back of the plane. To find elapsed time, we note the time at the beginning and end of the motion and subtract the two. For example, a lecture may start at 11:00 A.M. and end at 11:50 A.M., so that the elapsed time would be 50 min. Elapsed time \(\Delta t\) is the difference between the ending time and beginning time,

 

\(\Delta t=t_f-t_0\) 2.4

 

where \(\Delta t\) is the change in time or elapsed time, tf is the time at the end of the motion, and \(t_0\) is the time at the beginning of the motion. (As usual, the delta symbol, \(\Delta\), means the change in the quantity that follows it.)

 

Life is simpler if the beginning time \(t_0\) is taken to be zero, as when we use a stopwatch. If we were using a stopwatch, it would simply read zero at the start of the lecture and 50 min at the end. If \(t_0\)=0, then \(\Delta t=t_f\equiv t\).

 

In this text, for simplicity's sake,

  • Motion starts at time equal to zero (\(t_0=0\)).
  • The symbol t is used for elapsed time unless otherwise specified \(\Delta t=t_f\equiv t\)

 

 

No hints found for this question

Free Response

Give an example (but not one from the text) of a device used to measure time and identify what change in that device indicates a change in time.

No answers found for this question
No hints found for this question

Multiple Choice

What does the symbol \(\Delta\) means?

Answer Rubric % Of Choosen
It means the difference between the ending time and the beginning time. In-Correct 7 %
It means the difference between the ending speed and beginning speed. In-Correct 0 %
It means the difference between the ending velocity and beginning velocity. In-Correct 0 %
It means a change in the quantity that follows it Correct 93 %
No hints found for this question

Instructional Block

Velocity

 

Your notion of velocity is probably the same as its scientific definition. You know that if you have a large displacement in a small amount of time you have a large velocity, and that velocity has units of distance divided by time, such as miles per hour or kilometers per hour.

 

AVERAGE VELOCITY

 

Average velocity is displacement (change in position) divided by the time of travel,

 

\(\bar{v} = \frac{\Delta x}{\Delta t}=\frac{x_f-x_0}{t_f-t_0}\) 2.5

 

where \(\bar{v}\)  is the average (indicated by the bar over the \(\bar{v}\)) velocity, \(\Delta x\) is the change in position (or displacement), and \(x_f\) and \(x_0\) are the final and beginning positions at times tf and \(t_0\), respectively. If the starting time \(t_0\) is taken to be zero, then the average velocity is simply

 

\(\bar{v}=\frac{\Delta v}{t}\) 2.6


Notice that this definition indicates that velocity is a vector because displacement is a vector. It has both magnitude and direction. The SI unit for velocity is meters per second or m/s, but many other units, such as km/h, mi/h (also written as mph), and cm/s, are in common use. Suppose, for example, an airplane passenger took 5 seconds to move −4 m (the minus sign indicates that displacement is toward the back of the plane). His average velocity would be 

 

\(\bar{v}=\frac{\Delta x}{t}=\frac{-4\; m}{5 \;s}=-0.8\;m/s\) 2.7

 

The minus sign indicates the average velocity is also toward the rear of the plane.

 

The average velocity of an object does not tell us anything about what happens to it between the starting point and ending point, however. For example, we cannot tell from average velocity whether the airplane passenger stops momentarily or backs up before he goes to the back of the plane. To get more details, we must consider smaller segments of the trip over smaller time intervals. 

 

Figure 1 A more detailed record of an airplane passenger heading toward the back of the plane, showing smaller segments of his trip.

 

The smaller the time intervals considered in a motion, the more detailed the information. When we carry this process to its logical conclusion, we are left with an infinitesimally small interval. Over such an interval, the average velocity becomes the instantaneous velocity or the velocity at a specific instant. A car's speedometer, for example, shows the magnitude (but not the direction) of the instantaneous velocity of the car. (Police give tickets based on instantaneous velocity, but when calculating how long it will take to get from one place to another on a road trip, you need to use average velocity.) Instantaneous velocity \(v\) is the average velocity at a specific instant in time (or over an infinitesimally small time interval).

Mathematically, finding instantaneous velocity,\(v\), at a precise instant \(t\)  can involve taking a limit, a calculus operation beyond the scope of this text. However, under many circumstances, we can find precise values for instantaneous velocity without calculus.

 

No hints found for this question

Multiple Choice

Object G moves faster than object H. Which of the objects would cover more distance at the same amount of time?

Answer Rubric % Of Choosen
Object H In-Correct 0 %
Cannot tell In-Correct 0 %
Both covered the same distance In-Correct 0 %
Object G Correct 100 %
No hints found for this question

Numeric

A car travels 827 km in 4 hours. Compute the distance, in kilometers, traveled after 7 hours.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 1450 50 [1400,1500] -

\(v={d \over t} \)

 

\(d=\left({827\;km \over 4\;h}\right)=206.75 \; \frac{km}{h}\)

 

If the car traveled at that average velocity, after 7 hours it traveled:

 

\(x= vt=\left(206.75\; \frac{km}{h}\right)(7\;h)\)

Answer: 1447.25


Multiple Choice

Two boys covered the same distance after running. Boy 1 recorded his time as 120 seconds and boy 2 has 90 seconds. Compare the velocity of the two boys.

Answer Rubric % Of Choosen
\(v_{boy_2}=v_{boy_1}\) In-Correct 0 %
\(v_{boy_2}\gt v_{boy_1}\) Correct 100 %
\(v_{boy_2}\lt v_{boy_1}\) In-Correct 0 %
\(v_{boy_1}\gt v_{boy_2}\) In-Correct 0 %
No hints found for this question

Numeric

Find the velocity, in \(m \over s\), of a particle that travels 330 meters in 2 hours.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 0.045 0.01 [0.035,0.055] -
Incorrect 165 0 [165,165] -

Convert the units of t

\(v= {x \over t}\)

 

Convert the units of t:  \(t = {(2 \space h)(3600 \space s) \over 1 \space h }= 7200 \space s\)

 

 \(v = {330 \space m \over 7200 \space s}\)

 

Answer: 0.0458


Multiple Choice

Arrange the velocity of the cars from least to greatest if they are covering a distance of 5 km, 4 km and 10 km at the same time. Name the cars X, Y and Z respectively. 

Answer Rubric % Of Choosen
\(Y \lt Z \lt X\) In-Correct 0 %
\(Y \lt X \lt Z\) Correct 0 %
\(X \lt Y \lt Z\) In-Correct 0 %
\(Z \lt X \lt Y\) In-Correct 0 %
No hints found for this question

Numeric

Two trains are approaching from opposite directions, separated by a distance of 7 km. The first train is traveling at 51 \(km \over h\) and the second one at 64 \(km \over h\). Calculate the time in which both trains will meet. Express your answer in seconds.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 215 5 [210,220] -

\(v={d \over t} \rightarrow t={d \over v}\)

 

\(t={7\;km \over 51\;{km \over h}\; +\; 64\;{km \over h}}\)

 

\(t=0.0609\;h\)

 

Convert the units of \(t\)\(t=0.0609\;h({3600\;s \over 1\;h})\)

 

 

Answer: 219.1304


Multiple Choice

Alex, Man, and Pon are planning to have a race upon going home. If Alex can run 2 m in 10 s, Pon can run 5 m in 30 s, and Man can run 0.5 m every second, who possibly win?

Answer Rubric % Of Choosen
Alex In-Correct 0 %
Man Correct 0 %
All will arrive at the same time. In-Correct 0 %
Pon In-Correct 0 %
No hints found for this question

Numeric

A child playing with marbles makes a precise shot to win. If the child's hand is 96 cm from the target and his shot takes 0.2 seconds to reach it, how fast does the marble leave the child's hand?

Express your answer in meters per second.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 4.8 0 [4.8,4.8] -
Incorrect 480 0 [480,480] -

Convert the units of x

\(v={x \over t} \)

 

Convert the units of \(x = {(96 \space cm)( 1 \space m)\over 100 \space cm}=0.96 \space m\)

 

 \(v={0.96 \space m \over 0.2 \space s}\)

 

Answer: 4.8


Multiple Choice

Car A and car B both have the same velocity. If car A travels for 1 hour and car B travels for half more hour, which car traveled more distance?

Answer Rubric % Of Choosen
Car B Correct 93 %
Cannot tell In-Correct 0 %
Car A In-Correct 7 %
Both traveled the same distance In-Correct 0 %
No hints found for this question

Multiple Choice

50 km/h North, 10 m/s East and 2 mi/min South describe what quantity?

Answer Rubric % Of Choosen
Acceleration In-Correct 0 %
Speed In-Correct 0 %
Velocity Correct 93 %
Displacement In-Correct 7 %
No hints found for this question

Numeric

A car travels at 44 \(km \over h\) during 47 minutes to the north, turns to the east, and travels at 21 \(km \over h\) during 13 minutes, then finally turns to the south and goes at 68 \(km \over h\) during 21 minutes. Compute the magnitude of the average velocity and express your answer in kilometers per hour.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 44.5 0.5 [44,45] -

\(v_{av}={v_1 + v_2 + v_3 \over 3}\)

 

\(v_{av}={44\;{km \over h}\; +\; 21\;{km \over h}\; +\; 68\;{km \over h} \over 3}\)

 

Answer: 44.3333


Instructional Block

Speed

 

In everyday language, most people use the terms “speed” and “velocity” interchangeably. In physics, however, they do not have the same meaning and they are distinct concepts. One major difference is that speed has no direction. Thus speed is a scalar. Just as we need to distinguish between instantaneous velocity and average velocity, we also need to distinguish between instantaneous speed and average speed.

 

Instantaneous speed is the magnitude of instantaneous velocity. For example, suppose the airplane passenger at one instant had an instantaneous velocity of −3.0 m/s (the minus meaning toward the rear of the plane). At that same time his instantaneous speed was 3.0 m/s. Or suppose that at one time during a shopping trip your instantaneous velocity is 40 km/h due north. Your instantaneous speed at that instant would be 40 km/h—the same magnitude but without a direction. Average speed, however, is very different from average velocity. Average speed is the distance traveled divided by elapsed time.

We have noted that distance traveled can be greater than displacement. So average speed can be greater than average velocity, which is displacement divided by time. For example, if you drive to a store and return home in half an hour, and your car's odometer shows the total distance traveled was 6 km, then your average speed was 12 km/h. Your average velocity, however, was zero, because your displacement for the round trip is zero. (Displacement is change in position and, thus, is zero for a round trip.) Thus average speed is not simply the magnitude of average velocity.

 

 

Figure 1 During a 30-minute round trip to the store, the total distance traveled is 6 km. The average speed is 12 km/h. The displacement for the round trip is zero, since there was no net change in position. Thus the average velocity is zero.

 

Another way of visualizing the motion of an object is to use a graph. A plot of position or of velocity as a function of time can be very useful. For example, for this trip to the store, the position, velocity, and speed-vs.-time graphs are displayed in Figure 1. (Note that these graphs depict a very simplified model of the trip. We are assuming that speed is constant during the trip, which is unrealistic given that we'll probably stop at the store. But for simplicity's sake, we will model it with no stops or changes in speed. We are also assuming that the route between the store and the house is a perfectly straight line.)

 

Figure 2. Position vs. time, velocity vs. time, and speed vs. time on a trip. Note that the velocity for the return trip is negative.

 

 

MAKING CONECTIONS: TAKE- HOME INVESTIGATION -- GETTING A SENSE OF SPEED

 

If you have spent much time driving, you probably have a good sense of speeds between about 10 and 70 miles per hour. But what are these in meters per second? What do we mean when we say that something is moving at 10 m/s? To get a better sense of what these values really mean, do some observations and calculations on your own:

  • calculate typical car speeds in meters per second
  • estimate jogging and walking speed by timing yourself; convert the measurements into both m/s and mi/h
  • determine the speed of an ant, snail, or falling leaf
No hints found for this question

Fill-In

___________________is the magnitude of velocity.

speed
Correct
Speed
Correct
SPEED
Correct

Speed


Numeric

The speed of propagation of the action potential (an electrical signal) in a nerve cell depends (inversely) on the diameter of the axon (nerve fiber). If the nerve cell connecting the spinal cord to your feet is 1.5 m long, and the nerve impulse speed is 18 \(m \over s\), how long does it take for the nerve signal to travel this distance?

Express your answer in seconds.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 0.0835 0.0005 [0.083,0.084] -

\(\text{time elapsed} = {\text{distance traveled} \over \text{average speed}}\)

 

\(\text{time elapsed} = {1.5\;m \over 18\;{m \over s}}\)

 

Answer: 0.0833


Numeric

A 1 micrometer long bacteria moves the distance the equivalent of 46 times its size in 1 hour. Calculate the distance traveled by the bacteria. Express the result in micrometers. 

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 46 0 [46,46] -
\(x=nx_b\)

 

 \(x =46(1 \; \mu m)\)

 

Answer: 46

Numeric

Calculate the speed of the bacteria. Express the result in \({m \over s}\).

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 1.25e-08 5.0E-10 [1.2E-8,1.3E-8] -
Incorrect 46 0 [46,46] -

Convert the units to \(m\over s\)

\(s={x\over t}\)

 

 \(s={46 \; \mu m\over 1 \; h}=46 \; { \mu m \over h}\)

 

Convert the units of s:

 

 \(s=46 \; {\mu m \over h}\left( {1 \; h \over 3600 \; s} \right)\left( {1\times 10^{-6} \; m \over 1 \; \mu m} \right)\)

 

Answer: 1.28E-8



Multiple Choice

Every car has a speedometer that also has an odometer which records the distance travelled by the car. If the reading in the odometer after half an hour is 40 km, which gives the car’s average speed? Suppose the car started from rest.

Answer Rubric % Of Choosen
80 km2/h In-Correct 0 %
20 km/h In-Correct 0 %
80 km/h Correct 100 %
40 km/h In-Correct 0 %
No hints found for this question

Free Response

Is it possible for the velocity of a particle to change if its speed is constant? Or changes its speed if the velocity is constant? Explain your reasoning. If yes, give an example. 

No answers found for this question
No hints found for this question

Numeric

The speed of propagation of the action potential (an electrical signal) in a nerve cell depends (inversely) on the diameter of the axon (nerve fiber). If the nerve cell connecting the spinal cord to your feet is 1.4 m long, and the nerve impulse speed is 18 \(m \over s\), how long does it take for the nerve signal to travel this distance? Express your answer in seconds.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 0.0775 0.0005 [0.077,0.078] -

\(\text{time elapsed} = {\text{distance traveled} \over \text{average speed}}\)

 

\(\text{time elapsed} = {1.4\;m \over 18\;{m \over s}}\)

 

Answer: 0.0778


Multiple Choice

Izrafel drove his bicycle from home, round to the park, then back home with a speed of 3.8 m/s. What is his average velocity?

Answer Rubric % Of Choosen
Zero Correct 57 %
Less than 3.8 m/s In-Correct 14 %
3.8 m/s In-Correct 30 %
More than 3.8 m/s In-Correct 0 %
No hints found for this question

Numeric

A cheetah can travel 793 m in 26 seconds. What is its average speed in meters per second?

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 30.5 0.5 [30,31] -
\(\bar{s}={x \over t}\)

 

 \(\bar{s}= {793 \space {m } \over 26 \space s}\)

 

Answer: 30.5


Multiple Choice

Average speed is not the magnitude of average velocity.

Answer Rubric % Of Choosen
True In-Correct 7 %
False Correct 93 %
No hints found for this question

Numeric

The speed of propagation of the action potential (an electrical signal) in a nerve cell depends (inversely) on the diameter of the axon (nerve fiber). If the nerve cell connecting the spinal cord to your feet is 1.5 m long, and the nerve impulse speed is 17 \(m \over s\), how long does it take for the nerve signal to travel this distance?

Express your answer in seconds.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 0.0885 0.0005 [0.088,0.089] -

\(\text{time elapsed} = {\text{distance traveled} \over \text{average speed}}\)

 

\(\text{time elapsed} = {1.5\;m \over 17\;{m \over s}}\)

 

Answer: 0.0882


Numeric

The gunman "Lazy" McAndrew assaults the state bank and runs away to the border on his mustang reaching a speed of 33 km/h. After 17 minutes, the sheriff arrived at the crime scene and undertakes the pursuit.

How many minutes will take "Lazy" McAndrew to arrive at the border if it is 24 km away from the bank?

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 43.5 0.5 [43,44] -

\(t = {d \over s}\)

 

\(t = {24\;km \over 33\;{km \over h}}\)

 

\(t = 0.7273\;h\)

 

Convert the unit of \(t\)\(t = 0.7273\; \not h \bigg( {60\;min \over 1\; \not h} \bigg)\)

 

Answer: 43.6364

Numeric

Calculate the minimum speed in kilometers per hour that the sheriff needs to reach McAndrew before he crosses the border.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 54 1 [53,55] -

\(s_{min} = {d \over \tau}\) where \(\tau = 43.6364\;min - 17\;min = 26.6364\;min \)

 

Convert the units of \(\tau\)\(\tau = 26.6364\;\not min \bigg( {1\;h \over 60\;\not min} \bigg) = 0.4439\;h\)

 

\(s_{min} = {24\;km \over 0.4439\;h}\)

 

Answer: 54.0614



Numeric

Richard walks 23 minutes at 4 \(m \over s\) every day. Compute the distance, in meters, traveled by Richard in a solar year. 

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 2050000 50000 [2000000,2100000] -

\(s={d \over t} \rightarrow d=s \cdot t\)

 

Convert the units of \(t\)\(t=23\;min({60\;s \over 1\;min})=1380\;s\)

 

\(d=(4\;{m \over s})(365 \text{ days} \cdot 1380\;s)\)

 

Answer: 2.01E6


Numeric

A woman drives at 42 \(km \over h\) to a meeting out of her office. If she takes the same route back to the office and wants to maintain an average speed of 65 \(km \over h\) for the whole trip, at what speed, in kilometers per hour, should she be driving from the meeting to the office?

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 88 0 [88,88] -

\(\bar s={s_1 + s_2 \over 2}\)

 

\(s_2=2\bar s-s_1\)

 

\(s_2=2(65\;{km \over h})-42\;{km \over h}\)

Answer: 88

 


Numeric

A delivery must arrive to its destination at 4:00 PM. If the delivery truck leaves the office at 11:00 AM, and its destination is 708 km away, at what speed, in \(mi \over h\), should the delivery truck be traveling to arrive on time?

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 87.5 0.5 [87,88] -

\(s={x \over \Delta t}\)

 

The delivery truck has 5 hours to get to its destination.

 

\(s={708\;km \over 5\; h}=141.6\;{km \over h}\)

 

Convert the unit of speed to \(mi \over h\)\(v=141.6\;{km \over h}\big({0.62\;mi \over 1\;km}\big)\)

Answer: 87.792


Numeric

A space agency is planning to send two spaceships to the International Space Station (ISS). The first spaceship travels at a speed of 5.1 \(km \over s\) and the second at 3.4 \(km \over s\), both traveling at a constant speed. If the first spaceship travels for 76 seconds, how many minutes later will the second spaceship arrive at the ISS?

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 1.9 0 [1.9,1.9] -

\(s={x \over \Delta t} \rightarrow x=st\)

 

Both spaceships travel the same distance at different velocities, therefore \(x=s_1t_1=s_2t_2\)

 

\(t_2={s_1t_1 \over s_2}={(5.1\;{km \over s})(76\;s) \over 3.4\;{km \over s}}=114\;s \big({1\; \text{min} \over 60\;s}\big)\)

 

 

Answer: 1.9


Numeric

Consider the speed of light through the air as \(3.00\times10^8 \; {m \over s}\) and the speed of sound through the air as \(300 \; {m \over s}\). How long does it take for an observer to hear the thunder if he is 138 km away after observing the light? Express your answer in seconds.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 455 5 [450,460] -
Incorrect 0.455 0.005 [0.45,0.46] -

Convert the units of x

\(s={x \over t}\) \(\Rightarrow \; t={x \over s}\)

 

 

 \(\Delta t={t_{sound}-t_{light}}={x \over s_{sound}}-{x \over s_{light}}=x\left[ {1 \over s_{sound}}-{1 \over s_{light}} \right]\)

 

Convert the units of x: \(x=138 \; km\left(1000 \; m \over 1 \; km \right)=138000 \; m\)

 

 \(\Delta t=138000 \; {m}\left[ {1 \over 300 \; {m \over s}}-{1 \over 3.00\times10^8 \; {m \over s}} \right]\)

 

Answer: 459.9995


Numeric

A lady goes to the store on her bicycle to buy some milk and travels 0.5 km in 5 minutes, then she walks 1.5 km in 12 minutes. What is the average speed, in \(km \over h\), of the lady when doing the route?

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 7 0.2 [6.8,7.2] -
Incorrect 0.115 0.005 [0.11,0.12] -

Convert the units of \(\Delta t\)

\(\bar{s}={\Delta x\over \Delta t}\)

 

 \(\Delta x=(0.5+1.5) \space km=2 \space km\)  and  \(\Delta t=(5+12) \space min=17 \space min\)

 

Convert the units of \(\Delta t\):  \(\Delta t= {(17 \space min)(1 \space h)\over 60 \space min}= 0.2833 \space h \)

 

 \(\bar{s}={2 \space km \over 0.2833 \space h}\)

 

Answer: 7.0588


Numeric

For her daily training, an athlete runs a distance of 299 m in 1 minute. What is her average speed in meters per second?

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 4.95 0.05 [4.9,5] -
Incorrect 295 5 [290,300] -

Convert the units of t.

\(\bar{s}={d \over t}\)

 

Convert the units of t: \(t=1\; min\left( \frac{60\;s}{1\; min}\right)=60\;s\)

 

\(\bar{s}={299\;m \over 60\;s}\)

 

Answer: 4.9833


Numeric

How many seconds does it take for a cat running with a speed of 1.1 \(m \over s\) to travel 6 meters?

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 5.45 0.05 [5.4,5.5] -
\(s={x \over t}\)

 

 \(t={x\over s}\)

 

 \(t= {6 \space m \over 1.1 \; \frac {m}{s}}\)

 

Answer: 5.4545


Numeric

A car traveling at 30 \(\frac ms\) decelerates at a constant rate to a complete stop after traveling 48 m. What is the average speed of the car?

Express your answer in meters per second.

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 15 0 [15,15] -

\(\bar v = {vi + vf \over 2}\)

 

\(\bar v = {30\; \frac ms + 0 \; \frac ms \over 2}\)

 

Answer: 15

Numeric

How many seconds does it take for the car to stop?

Is correct? Answer (midpoint) Rounding Margin Answer Range Units Wrong Answer Feedback
Correct 3.2 0 [3.2,3.2] -

\(\bar v = {d \over t} \rightarrow t = {d \over \bar v}\)

 

\(t={48\;m \over 15\;\frac ms}\)

 

Answer: 3.2 



Simplify how you teach physics.

Start with Key2PHYSICS, our all-in-one Learning Platform for Physics Educators. It has the tools you need to teach physics—lessons, assessments, and learning reports—all in one place.